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ABSTRACT 

Boiler tube leaks significantly reduce the operational availability of power units, yet their early 
detection and prediction have not been fully realised in the industry. This paper introduces a 
novel approach employing deep feedforward neural networks for early detection of boiler tube 
leaks in pulverised coal-fired boilers. Early detection enhances repair planning, minimising 
downtime and production losses. It also improves monitoring and control of boiler tube 
failures, thereby optimising power plant operations and revenue. Diverse deep neural 
network models were developed and rigorously tested by leveraging 9 years of operational 
data (2012–2020). Exhaustive hyper-parameter optimisation, involving seven parameters, 
substantially improved predictive accuracy. By achieving training and testing accuracies 
of 82.8% to 99.3%, the study assessed their ability to detect boiler tube leaks over the same 
9-year span, providing insights into leak detection capabilities. The models notably predicted 
all 12 identified tube leak events, averaging a 14-day lead time before boiler shutdown. In 
addition to leak prediction, a leak detection matrix was devised to analyse residual behaviour 
and reduce the likelihood of false alarms. However, the models’ predictive performance 
was observed to be limited to the following year, with satisfactory results for 2021 only. 
Incorporating the 2021 data into retraining significantly improved the predictions for 2022. The 
study concludes that while the models demonstrate robust short-term prediction capabilities, 

they require continuous retraining to maintain 
accuracy and relevance. This ongoing 
refinement is essential for keeping the models 
up-to-date and reliable in predicting future 
boiler tube leaks.

Keywords: Boiler, detection, hyper-parameter, neural 
network, prediction, tube leak, tuning
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INTRODUCTION

Coal-fired units grapple with persistent forced outages primarily attributed to boiler tube 
failures. The cyclic duty of the boiler results in fatigue, affecting both the boiler and 
associated heat exchanger tubes. In a benchmarking survey by the Electric Utility Cost 
Group (EUCG), covering 167 units of various sizes (from 8 MW to 1264 MW) across 
seventeen utilities, it was highlighted that despite the units maintaining high capacities 
relative to their size and age, boiler tube failures remained the predominant cause of 
downtime for these steam power plants (Pfeuffer, 2009). A more recent study by Kokkinos 
(2019) in the U.S. revealed that between 2013 and 2017, tube leaks persisted in water 
walls, followed by the second superheater, primary reheater, and primary superheater. 
Boiler leaks accounted for 54% of total outages, with the remainder caused by balance 
of plant (BOP), steam turbine, and generator issues. Coal-fired units struggle with forced 
outages due to cyclic-induced fatigue, with boiler tube failures being the primary culprit. 
Surveys and recent studies emphasise the persistence of these issues across various-sized 
units, leading to substantial downtime and high repair costs.

In the power generation industry, outage costs due to production loss, whether planned 
or forced, are substantial (Tam et al., 2007). One of the main reasons for the increased rate 
of failures of boiler pressure parts is the requirement of power units to work at greater 
load variability, resulting in frequent changes in operating pressure and temperature of 
the working fluid, i.e., feedwater and/or steam. Consequently, those units are subjected 
to increased sediment precipitation from the working fluid. While being transported by 
the working fluid, these sediments may easily be deposited on rough regions of the inner 
surfaces of boiler tubes. It causes further flow disorder and can result in overheating of 
tubes. Thus, there is interest in developing early detection methods to predict these types 
of faults earlier. It has been reported in a few case studies that boiler tube failures escalate 
slowly, sometimes up to ten days or so, before they may be detected by the staff of the 
power plant through conventional means (Alouani & Chang, 2003; Barszcz & Czop, 2011; 
Lang et al., 2004; Sun et al., 2002).

These tube leaks constitute a potential for severe physical harm to boiler pressure 
parts owing to pipe whip and/or steam cutting of the impacted and adjacent pipes. The 
ultimate harm caused by severe tube failures can range from $2 to $10 million per leak for 
a commercial steam generator. These high costs result from forced boiler shutdowns for 
repairs, which could last up to a week if the leak is not detected for an extended period (Lang 
et al., 2004). Tube failures can be repaired before disastrous damage if detected early, with 
such repairs only lasting several days and costing a fraction of the price of late detection.

The power industry does not put considerable effort into early boiler tube leak detection 
amid the high-cost implications of late detection. The AI approach to boiler tube leak 
detection is also not well established. Several studies have been conducted using AI-based 
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methods on pulverised coal-fired boiler tube leak detection. Nistah et al. (2018) proposed 
a boiler fault prediction model using artificial neural networks (ANN) with multi-layered 
perceptrons (MLP), which achieved a 92% prediction rate of accuracy. Singh et al. 
(2017) developed an Intelligent Warning System (IWS) that combines ANN and Genetic 
Algorithms (GA) in their prediction model. The prediction model was trained and tested 
based on three real cases of boiler tube leak trips at a power plant with six operational 
units totalling a generation capacity of 2420 MW in Malaysia. Ismail et al. (2016) also 
employed ANN in their prediction model for one boiler unit of a power plant with a total 
generation capacity of 2400 MW in Malaysia. The sample data was based on a boiler tube 
leak incident in 2013. Rostek et al. (2015) focused their research on a boiler tube leak 
prediction model for a fluidised-bed coal-fired boiler in Poland. They employed a 2-stage 
structure of ANN in their study. The model could predict boiler tube leaks at least 2 days 
before the boiler shutdown.

Despite extensive prior research on the early prediction of boiler tube leaks in coal-
fired power plants, several issues remain to be addressed to enhance prediction accuracy. 
Rostek et al. (2015) utilised a basic multilayer perceptron neural network with 19 input 
variables, a single hidden layer containing 16 neurons, and an output layer with one 
neuron. However, the training accuracy was suboptimal, with the highest-quality model 
needing an 80% correlation coefficient (R2) between actual and predicted data. While 
some models successfully identified boiler tube leaks 2 to 9 days in advance, certain leak 
incidents were not detected by the selected signal sensitive to tube leaks. Furthermore, 
this prediction method was only validated in fluidised-bed coal-fired boilers and has not 
yet proven effective for pulverised coal-fired boilers. 

In Malaysia, attempts to accurately predict boiler tube leaks in pulverised coal-fired 
boilers faced challenges due to limited available data. Ismail et al. (2016) utilised only 
one week of data collected at one-minute intervals, comprising approximately 11,000 data 
sets, selected based on a single boiler tube leak incident. The neural network algorithm 
was trained using 26 sensors, employing a simple feedforward neural network structure 
with a maximum of two hidden layers and no more than ten neurons per layer. However, 
this model could only detect boiler tube leaks with a 10-minute advance notice, which is 
inconsequential for power plant operators. Similarly, Singh et al. (2017) examined only 
12 days of data collected at one-minute intervals from three boiler tube leak incidents to 
train their network. Their neural network, employing feedforward and backpropagation 
with two hidden layers, utilised only 17 sensors as input. However, the model achieved 
only a 20-minute advance prediction, which was also deemed insignificant.

In essence, two primary concerns need to be addressed. Firstly, previous studies 
have suffered from the simplicity of their neural network structures, leading to a notable 
difference between the actual and predicted data during training. Additionally, this simplicity 
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has led to the failure to detect several tube leak incidents throughout the studies. Secondly, 
there is a limitation of available operational data from the boilers, with a relatively small 
number of sensors being considered during the training of the neural network algorithm. 
Consequently, this has resulted in insignificant early detection (within 10 to 20 minutes) 
before the plant operator identifies the leak.

MATERIALS AND METHODS

Deep Feed Forward Neural Network as Learning Architecture for Time-series 
Prediction

The power plant’s data structure necessitates applying multivariate time series analysis 
to predict boiler tube leak occurrences. A time series is a sequence of values arranged 
chronologically and observed over time. While time is measured as a continuous variable, 
the values in a time series are sampled at constant intervals (fixed sampling frequency) 
(Torres et al., 2021).

The Deep Feedforward Neural Networks (DFFNN) algorithm was carefully 
considered for this study over alternative architectures such as Convolutional Neural 
Networks (CNN) and Recurrent Neural Networks (RNN) based on several key 
factors. Firstly, the sensor data collected from the power plant environment comprises 
multivariate time series data, where each data point is influenced by multiple input 
variables recorded over time. In this context, DFFNN is well-suited for handling the 
complex interdependencies and nonlinear relationships in such data, as it can effectively 
model the interactions between input variables without relying on sequential processing. 
Furthermore, DFFNN offers scalability and computational efficiency advantages, which 
are crucial considerations for large-scale time series prediction tasks involving millions 
of data points, as in the researchers’ study.

While CNN excels in capturing spatial dependencies within data, particularly in image 
processing tasks, and RNNs are effective for sequential data modelling due to their ability 
to retain information over time, DFFNN was opted for due to the unique characteristics 
of their dataset and the specific requirements of their prediction task. Additionally, while 
RNNs are capable of capturing temporal dependencies within sequential data, they may 
encounter challenges with long-range dependencies and vanishing/exploding gradient 
problems, particularly in deep architectures. In contrast, DFFNN does not suffer from 
these limitations and can effectively model long-range dependencies by incorporating 
multiple hidden layers.

The DFFNN was developed in response to the limitations of single-layer neural 
networks in learning certain functions. The structure of a DFFNN comprises an input 
layer, an output layer, and multiple hidden layers, each housing a specific number of 
neurons. The connections between neurons in two adjacent layers are modelled using 
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weights determined during the network’s training phase. These weights are computed 
by minimising a cost function through gradient descent optimisation methods, with the 
backpropagation algorithm used to calculate the gradient of the cost function. Once the 
weights are determined, the values of the output neurons are obtained using a feedforward 
process.

In time series forecasting, the rectified linear unit function is commonly employed as 
the activation function for all layers except the output layer, which uses the hyperbolic 
tangent function to derive predicted values. Various hyperparameters, such as the number 
of layers, neurons, learning rate, momentum, and mini-batch size, need to be pre-selected. 
The choice of these hyperparameters significantly influences the network’s predictive 
outcomes.

Research Objective

The study was conducted on a single unit of a pulverised coal-fired boiler at a power plant 
in Malaysia. This study utilised data collected from the plant’s process control system 
from 2012 to 2020.

Figure 1 illustrates the breakdown of faults that contributed to the decreased available 
capacity for power generation at the plant. This figure provides an overview of the key 
plant systems responsible for these faults across two power units during the 2012 to 2020 
period. Notably, the boiler system was identified as the primary source of faults, accounting 
for 73.6% of all recorded incidents. Following the boiler system, the auxiliary, electrical, 
coal pulverising, and turbine systems contributed to these faults, with the coal supply and 
handling system being the least affected. Within the 73.6% of faults attributed to the boiler 
system, 50.3% were due to boiler tube leaks. In comparison, the remaining 23.3% were 
related to other issues within the boiler system, such as the air and flue gas system and 
operational management of the boiler.

Figure 1. Main plant system contributor to power unit fault (2012 to 2020)
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Data Collection

The selected algorithm for early detection of tube leaks in this study was the DFFNN. This 
network’s structure includes an input layer, several hidden layers, and a single output layer. 
For DFFNN training, the input variables are boiler operation parameters not influenced 
by tube leaks, while the output variables are those impacted by such leaks (Karim & 
Mustafah, 2022). The power plant employs 120 sensors to measure the input variables, 
which are integrated into the input layer for training and testing the DFFNN configurations. 
Selected sensors for input variables include main feedwater pressure and temperature, as 
well as pressures and temperatures for hot and cold reheat steam and superheaters inlet 
and outlet steam.

Conversely, 10 sensors are dedicated to measuring output variables, creating 10 distinct 
DFFNN models. Each model is named according to the sensitive output variable it tracks, 
as listed in Table 1.

Table 1 presents the output variables sensitive to tube leaks and their corresponding 
model names, such as “COND WTR FLOW” for condensate water flow rate and “DEA 
WTR FLOW” for deaerator and feedwater tank water flow rate.

Table 1 
Output variables sensitive (affected) to tube leak occurrence and the corresponding model name

No. Output variables Model name
1 Condensate water flow rate COND WTR FLOW
2 Deaerator and feedwater tank water flow rate DEA WTR FLOW
3 Main feedwater flow rate MAIN FW FLOW
4 Economiser outlet flue gas O2 concentration (sensor A) ECO A OTL O2
5 Economiser outlet flue gas O2 concentration (sensor B) ECO B OTL O2
6 Primary air flow rate TOTAL PA FLOW
7 Secondary air flow rate (sensor A) HOT SA A FLOW
8 Secondary air flow rate (sensor B) HOT SA B FLOW
9 Induced draught fan suction pressure (sensor A) IDF A FG PRESS
10 Induced draught fan suction pressure (sensor B) IDF B FG PRESS

This study stands out by utilising a more extensive array of sensors over a longer 
period compared to previous studies. Sensor data spanning 9 years, from 2012 to 2020, 
were collected at 10-minute intervals for neural network model training and testing and at 
5-minute intervals for leak prediction. The study used 120 sensors for network inputs and 
10 for outputs per data set, a significant increase from previous research, which typically 
used fewer than 30 sensors for inputs and a maximum of 4 for outputs. Approximately 
473,000 data sets containing around 130 sensor data points were utilised, resulting in over 
61 million data points collected and employed for model learning. Table 2 compares the 
data structures employed in earlier research for the early prediction of boiler tube leaks.
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Table 2
Comparison of data structures with previous research

This 
research

Rostek et al. 
(2015)

Ismail et al. 
(2016)

Singh et al. 
(2017)

No. of boiler units studied 1 1 1 1
No. of boiler tube leak 
incident 12 12 1 3

Data period 9 years
(2012–2020)

8 years
(2005–2012) 7 days 36 days

Sampling interval
- Network training and 

testing 10 minutes 20 minutes 1 minute 1 minute

- Leak prediction 5 minutes 1 minute 1 minute 1 minute
No. of sensors for input 
variables 120 19 26 17

No. of sensors for output 
variables 10 4 1 1

DFFNN Training and Testing

The model’s training data excluded periods when the boiler experienced tube leaks, starting 
30 days before the leak event and ending on the event day. It ensured that all training data 
came from when the plant operated normally, with stable parameters. The data was divided, 
with 80% used for training and the remaining 20% for validation during testing.

Input variables for training were those not influenced by tube leaks, while output 
variables were leak-sensitive. The input data passes through the network’s layers, producing 
output data. In this forward pass, the network’s weights were initially set. The outputs were 
then compared to the desired values. In the backward pass, the difference (error) between 
the desired and calculated outputs was used to adjust the network’s weights to reduce error. 
The supervised learning process continued iteratively until the error reached an acceptable 
level. Each complete cycle of processing the data set, forward and backwards, was termed 
an epoch. The network training aimed to reduce the error with each epoch.

Various well-known loss functions, such as Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Square Logarithmic Error 
(MSLE), and Mean Absolute Percentage Error (MAPE), were used to minimise the 
difference between the desired and calculated outputs.

The effectiveness of network training and testing was assessed using the square of the 
correlation coefficient (R2), per Behera et al. (2014). R2 values close to 1 indicate a strong 
relationship. After training the network to satisfactory performance, it was validated or tested 
with the remaining 20% of the data. Through hyper-parameter tuning, various network 
configurations were explored to identify the best model for representing leak-sensitive 
variables. Figure 2 depicts finding the most efficient DFFNN structures for fault detection.
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The models were developed, trained, and tested using Keras, an advanced programming 
interface for neural networks that emphasises rapid experimentation. Keras is Python-based 
and operates on the TensorFlow backend.

Hyper-parameter Tuning

Most hyperparameters used in this research’s DFFNN were tuned to achieve optimum 
accuracy and minimum loss. A DFFNN network structure from Mishra et al. (2020) 
was selected as the base model to start the hyperparameter tuning. The model was used 
to analyse deep learning performance for multivariate prediction of time series wind 
power generation and temperature. The initial network configuration for this study can be 
summarised in Table 3.

ADAM was selected as an optimiser, with a default learning rate of 0.001. The 120 
input data were fed to the network in mini-batches size 512 throughout 10 epochs. Once 
the performance of the network was obtained, the hyper-parameters were tuned in the 
following order:

(i)    Layer activation function  
(ii)    Number of hidden layers
(iii)    Number of neurons in each hidden layer
(iv)    Optimisers

Figure 2. The algorithm for finding the best structures of DFFNN for fault detection
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Table 3
Initial DFFNN network structure

Hidden Layer Output 
Layer1 2

No of neurons 512 128 2
Activation ReLU ReLU NA
Dropout 0.5 0.5 NA

(v)    Losses
(vi)    Mini-batch size
(vii)   Learning rate and number of 
          epochs 
Each hyper-parameter tuning step was 

considered one set of experiments. Therefore, 
seven experiments were conducted to 
determine the best network structure for the 
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10 parameters affected by tube leak prediction models. The best hyper-parameter setting 
for the 10 models in each experiment was carried over to the next experiment, where a 
different hyper-parameter was tuned in the order above.

Once the models’ network structure was finalised, it was revalidated by changing to 
different layer activation functions to confirm the initial assumption that the activation 
function was the most hyperparameter affecting model performance.

Detection of Leaks Using Method of Residue 

In a similar approach to Rostek et al. (2015), this study also implemented a residue method 
for leak detection. After the models were thoroughly trained and tested under normal, fault-
free conditions, they were then applied to data from periods of tube leak faults. This fault 
data, encompassing 30 days leading up to the boiler shutdown, was sampled at 5-minute 
intervals. It was then input into the models to predict the leak-sensitive variables under 
normal conditions. Figure 3 illustrates this data division process.

The model’s predicted output was compared against the actual process signals 
measured. When a leak occurred, the measured signal deviated from the predicted output, 
creating a residual value indicative of a boiler tube leak fault. This residual value was then 
evaluated against a predetermined threshold, established from the network’s training and 
testing results, to confirm the presence of a leak.

Determining the leak detection threshold involved analysing histograms from averaged 
time series in the fault-free state and comparing them to a normal distribution. In the residue 
method, the acceptable probability for false alarms was less than 0.5%. Figure 4 shows an 
example of leak detection using the residue method for the ECO A OTL O2 model. This 
model compares the residual value r against the leak detection threshold. If r exceeds this 
threshold, it signals a potential boiler tube leak.

Evaluation of Model Ability for Early Tube Leak Detection

The last phase of the research was to evaluate the trained models with the next 2 years 
of plant data in 2021 and 2022. The sensor data from 120 variables not affected by tube 

Figure 3. Data division before boiler emergency shutdown
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leaks for 2021 and 2022 were input to the 10 trained models, and the predicted output by 
each model was recorded. The data structure was the same as in training the model, with 
the sensor data sampled every 10 minutes and undergoing data cleansing, treatment, and 
normalisation before inputting the models.

The predicted sensor data from the models’ output for the 2 years was then compared 
with the actual data, and the residuals were subjected to a threshold for boiler tube leak 
detection. The performance of each model prediction was evaluated by the ability to detect 
tube leak events during those 2 years.

RESULTS AND DISCUSSION 

Model Training and Testing with Hyper-parameters Tuning

The overall model training and testing with hyper-parameters tuning results showed that 
all the models’ performance increased throughout the series of hyper-parameters tuning 
experiments. Changing the layer activation function significantly impacted the model 
training and testing accuracy from the initial model. The following tuning experiments 
on the number of hidden layers, number of neurons in the hidden layer, optimiser, and 
loss function did improve the accuracy slightly. Finally, increasing the number of training 
epochs to 50 increased the accuracy significantly, especially for the ECO A OTL O2 and 
ECO B OTL O2 models, which showed increments of 12.51% and 13.54%, respectively, 
in training accuracy. Examples of the progress on two model training and testing accuracy 
and losses after each hyper-parameter tuning experiment are shown in Table 4.
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Figure 4. Example of economiser outlet flue gas O2 concentration model for fault detection by residue method
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Table 4
Example of results of hyper-parameters tuning for COND WTR FLOW and ECO B OTL O2 model

Exp. Hyper-parameter
COND WTR FLOW ECO B OTL O2

Accuracy (R2) Losses Accuracy (R2) Losses
Train Test Train Test Train Test Train Test

1 Initial model 0.988 -8E+04 0.0001 5E+02 0.773 -1E+06 0.0002 3E+02
2 Layer activation function 0.970 0.759 0.0003 0.0013 0.677 -0.157 0.0003 0.0002
3 No. of hidden layer 0.989 0.938 0.0001 0.0003 0.773 -0.263 0.0002 0.0002

4 No. of neurons in the 
hidden layer 0.990 0.938 0.0001 0.0003 0.773 -0.263 0.0002 0.0002

5 Optimizer 0.991 0.952 0.0001 0.0003 0.788 0.544 0.0002 0.0004
6 Losses function 0.991 0.952 0.0001 0.0003 0.796 0.612 0.0002 0.0004

7 Learning rate and no. of 
epochs 0.996 0.964 0.0000 0.0002 0.932 0.828 0.0002 0.0003

The finalised models’ training and testing accuracy and losses after completion of 
hyper-parameters tuning are shown together with their corresponding network structures 
in Table 5. All models can be considered high quality since they achieved considerably 
high training accuracy of more than 93%, the lowest being ECO B OTL O2 with 93.16% 
and the highest, IDF A FG PRESS, at 99.63%. ECO A OTL O2 had the lowest testing 
accuracy at 75.65%, while the highest was DEA WTR FLOW at 98.88%. The summary 
of this research’s optimised DFFNN network structure has the characteristics in Table 6.

Table 5
Overall results of hyper-parameters tuning

COND WTR 
FLOW

DEA WTR 
FLOW

ECO A OTL 
O2

ECO B OTL 
O2

HOT SA A 
FLOW

Layer Activation 
Function Tanh Tanh Tanh Tanh Tanh

No Hidden Layer 9 7 9 9 8
No neurons in the 
hidden layer

512-256-128-
64-32-16-8-4-2

512-256-128-
64-32-16-8

512-256-128-
64-32-16-8-4-2

512-256-128-
64-32-16-8-4-2

512-256-128-
64-32-16-8-4

Optimizer Adam Adam Adam Nadam Adam
Learning Rate 0.001 0.001 0.001 0.001 0.001
Losses function msle mse mse mae mae
No of Epoch 50 50 50 50 50
Mini Batch size 512 512 512 512 512
Accuracy (R2)

Train 0.9922 0.9925 0.9472 0.9316 0.9752
Test 0.9838 0.9888 0.7565 0.8275 0.8789

Losses
Train 0.0000 0.0001 0.0000 0.0031 0.0108
Test 0.0002 0.0024 0.0006 0.0048 0.0214
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Assessment of Fault Detection by Models of the Variables Sensitive to Leaks

The validated models were subsequently applied to data from periods when tube leaks 
occurred. This fault data, encompassing 30 days leading up to the boiler shutdown, was 
sampled at 5-minute intervals and used as input to forecast variables influenced by tube 
leaks under normal conditions. Table 7 displays the fault detection outcomes for the top 
10 models across 12 boiler tube leak events, considering leaks in the boiler pressure parts 
system (including the furnace water wall, radiant superheater, and reheater and heat recovery 
area). The final row sums up the number of faults each model detected, as shown in Table 7.

The residuals generated by the DFFNN models enabled the detection of all 12 
faults, with a minimum of 3 residual variables per fault. At least 5 variables identified 

HOT SA B 
FLOW

IDF A FG 
PRESS

IDF B FG 
PRESS

MAIN FW 
FLOW

TOTAL PA 
FLOW

Layer Activation 
Function Tanh Tanh Tanh Tanh Tanh

No of Hidden Layer 9 6 9 8 7
No of neurons in the 
hidden layer

256-128-64-
32-16-8-4-2-2

128-64-32-
16-8-4

512-256-128-
64-32-16-8-4-2

512-256-128-
64-32-16-8-4

512-256-128-
64-32-16-8

Optimizer Adam Adamax Adam AMSGrad Adam
Learning Rate 0.001 0.001 0.001 0.001 0.001
Losses function mse mse rmse mse mse
No of Epoch 50 50 50 50 50
Mini Batch size 512 512 512 512 512
Accuracy (R2)

Train 0.9724 0.9963 0.9948 0.9889 0.9921
Test 0.8562 0.9639 0.8946 0.9658 0.8473

Losses
Train 0.0002 0.0000 0.0070 0.0001 0.0002
Test 0.0254 0.0002 0.0215 0.0004 0.0206

Table 6
Summary of the optimised network structure

Hyper-parameter Properties Applicable model
Layer activation function tanh All models
No of hidden layer 9 5 out of 10 models
No of neurons in the first hidden layer 512 8 out of 10 models
Optimizer Adam 7 out of 10 models
Losses function mse 5 out of 10 models
Learning rate & no of epochs 0.001 & 50 All models
Mini batch size 512 All models

Table 5 (continue)
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the most faults. Exceptions were Fault #5 and Fault #8, where only 3 variables’ residues 
detected the fault. The average lead time between fault detection and boiler shutdown 
was approximately 14 days. The most effective variable for fault detection was HOT 
SA A FLOW, followed by HOT SA B FLOW and MAIN FW FLOW. These variable 
models could detect over half of the fault cases at least 3 days in advance. On the other 
hand, the ECO B OTL O2 model was the least efficient, detecting only 4 out of 12 faults 
at least 11 days in advance.

Example - Fault Detection by HOT SA A FLOW Model

The forced draught fan supplies hot secondary airflow in the boiler for coal combustion 
in the furnace. If boiler tube leaks, the main steam pressure will decrease due to the loss 
of steam. More steam needs to be produced; thus, more fuel needs to be burned to supply 
the additional heat to compensate for this loss. Additional fuel burning would require 
additional air to support combustion, increasing the hot secondary air. Therefore, during a 
tube leak event, the actual sensor reading will be more than the prediction, and the residual 
will increase as the tube leaks are prolonged.

The threshold for leak detection was found by analysing histograms of the difference 
between actual and predicted sensor readings, which were used for training the model. 
Compared with a normal distribution, the threshold was set at 99.5% of the distribution, 
yielding 1.165%, as shown in Figure 5. Tube leaks are indicated whenever the residual 
plot goes above the threshold.

In Figure 6, the model output for hot secondary air A flow is plotted against the 
measured value 30 days before boiler shutdown due to Fault #10 in 2019. The difference 
between the model output and the measured value is increasing around 12 days prior 
to the boiler shutdown, which is a symptom of a fault. Figure 7 illustrates the residual 
value and its 24-hour moving average from Figure 6. The moving average is considered 

Figure 5. Determination of threshold of the detection limit for the residual value of hot secondary air A flow

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0  0                      50000                100000                150000               200000                250000
No. of training data

R
es

id
ua

l v
al

ue
 o

f h
ot

 S
A 

A 
flo

w
 (%

)

24th moving average Threshold (99.5% of normal distribution) = 1.165%



2669Pertanika J. Sci. & Technol. 32 (6): 2655 - 2678 (2024)

Early Tube Leak Detection at Pulverised Coal-fired Boiler

Figure 7. The residual value of hot secondary air A flow and its 24-hour moving average for tube leak 
Fault #10

Figure 6. Exemplary courses of hot secondary air A flow, measured value and output from DFFNN model 
prior to shutdown of a boiler for tube leak Fault #10
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in the detection process to smooth out transient fluctuations of process data and reduce 
the possibility of false alarms in leak detection. The predetermined threshold allows fault 
detection approximately 12 days before the boiler shutdown.

Leak Detection Matrix

Based on the leak detection analysis of all 10 models, it can be concluded that a particular 
boiler tube leak occurrence is confirmed if it is detected concurrently by at least three 
models’ residuals. Referring to the leak detection time by the respective model for each 
Fault #1 to Fault #12 from Table 7, the following observation on the number of days that 
the boiler tube leaks were confirmed prior to the boiler shutdown was made and shown 
in Table 8. 

ca. 12 days
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The maximum number of days that the boiler 
tube leak was confirmed was for Fault #3 (circa 22 
days), while the least was for Fault #6 (circa 4 days). 
On average, the boiler tube leak detection could be 
confirmed 12 days prior to boiler shutdown. As an 
example, referring to Fault #10 in Figure 8, the 
first boiler tube leak detection was by the IDF A 
FG PRESS model 18 days before boiler shutdown, 
followed by the second detection by the IDF B FG 
PRESS model on the 14th day. The tube leak was 
confirmed by the third detection from HOT SA A 
FLOW on the 18th day prior to boiler shutdown. 
Another 3 models detected the tube leaks after 
that, with ECO B OTL O2 on the 11th day and 
DEA WTR FLOW and MAIN FW FLOW on the 
fourth day.

Evaluation of Fault Detection Models

The 10 models, which were trained using boiler process data from 2012 to 2020, were 
then inputted with data from January 2021 to November 2022 to evaluate their ability to 
detect two tube leak faults, named Fault #13 and Fault #14, in May 2021 and September 
2022, respectively. 

Fault Detection in Year 2021

The results for predictions in 2021 were decent, as 5 models produced residuals beyond 
the threshold limit in May. It confirmed the authenticity of the detection since Fault #13 
happened in the same month. There were several false alarms during other months: 2 

Table 8
Fault detection time by at least 3 models’ 
residuals

Fault 
no.

No of days that boiler tube 
leak was confirmed prior to 

boiler shutdown (detected by 
at least 3 model’s residual)

1 13
2 18
3 22
4 6
5 21
6 4
7 9
8 6
9 14
10 12
11 17
12 9

Figure 8. Sequence of boiler tube leak detection time by the corresponding models’ residuals for Fault #10
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models gave false alarms in February, and 1 model gave false alarms in April, September, 
and December, respectively. Detailed analysis of Fault #13 detection is shown in Figure 
9. The first detection was made 28 days before boiler shutdown by the TOTAL PA FLOW 
model, followed by the ECO B OTL O2 model on day 17 prior to boiler shutdown. The 
boiler tube leak, Fault #13, was confirmed with the third detection by the HOT SA B FLOW 
model 14 days prior to boiler shutdown. The next detection was made by another 2 models, 
IDF A FG PRESS and ECO A OTL O2, on day 7 prior to boiler shutdown.

As an example, in the case of detection by the HOT SA B FLOW model, the predicted 
outputs of the HOT SA B FLOW model were plotted against the actual sensor readings 
for the 23-month period (January 2021–November 2022), as shown in Figure 10. The 
corresponding residuals were plotted in Figure 11. It was observed that the residual 
plot went above the threshold in May, at the same time when boiler tube leak Fault #13 
happened. A more detailed residual trend with a 30-day period prior to boiler shutdown 
was plotted, as shown in Figure 12. It showed an early detection approximately 14 days 
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Figure 9. Sequence of boiler tube leak detection time by the corresponding models’ residuals for Fault #13

Figure 10. Measured value and output from the HOT 
SA B FLOW model for the year 2021

Figure 11. The residual value of hot secondary air B 
flow and its 24-hour moving average for the year 2021
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earlier before the tube leak was detected by power plant personnel, which was followed 
by boiler shutdown.

Fault Detection in Year 2022

The prediction for the year 2022 was observed to be inaccurate for all 10 models. All 
residual plots showed values significantly beyond the threshold for most of the months 
in 2022, which was unusual. For example, the predicted output against actual sensor 
readings for total primary airflow and its residuals were plotted in Figures 13(a) and 14(a), 
respectively. The residual plot shows it went above the threshold many times throughout 
the year, from March to June and August to November. It was concluded that the trained 
models could not predict future sensor data accurately beyond one year from the data used 
in training the model.

In an attempt to improve the prediction for the year 2022, all 10 models were retrained 
by adding boiler operational data from the year 2021 to the process. As a result, the 
predictions improved significantly, with 5 models having residuals going beyond the 
threshold limit in September. The authenticity of this detection was confirmed with the 
record that Fault #14 happened in September. There were also false alarms detected, with 2 
models giving false alarms in February, June, and August, respectively. On the other hand, 
1 model gave false alarms in March, April, May, and October, respectively.

Illustrations of these improvements were indicated in a similar plot of predicted against 
actual sensor data for total primary airflow and its residuals for 2022, as shown in Figures 
13(b) and 14(b), respectively. The residual plot was observed to go above the threshold in 
September when boiler tube leaks Fault #14 happened. A more detailed residual trend with 
60 days prior to boiler shutdown was plotted in Figure 15. It showed an early detection 
of circa 37 days before the tube leak was detected by power plant personnel, which was 

Figure 12. The residual value of hot secondary air B flow and its 24-hour moving average for tube leak Fault #13
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Figure 14. The residual value of total primary airflow and its 24-hour moving average in the year 2021 for: 
(a) model trained with 2012 to 2020 data; (b) model retrained with 2012 to 2021 data

Figure 13. Measured value and output from TOTAL PA FLOW model in the year 2022 for: (a) model trained 
with 2012 to 2020 data; and (b) model retrained with 2012 to 2021 data

(a) (b)

(a) (b)

followed by boiler shutdown. There was also a short period in April 2022 when the residual 
plot went above the threshold. However, other models did not detect this and considered 
it a false alarm.

Detailed analysis of Fault #14 detection is shown in Figure 16. The first detection 
occurred 37 days before boiler shutdown by the TOTAL PA FLOW model, followed by the 
HOT SA B FLOW model 37 days prior to boiler shutdown. The boiler tube leak, Fault #14, 
was confirmed with the third detection by the COND WTR FLOW model 24 days prior 
to boiler shutdown. Subsequent detections were made by two other models, DEA WTR 
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FLOW and HOT SA A FLOW, on days 18 and 5 prior to boiler shutdown, respectively.

Comparison of Results with Other Studies

In benchmarking results from this study, comparisons were made with several other studies, 
notably Rostek et al. (2015), Kim, Lee and Park (2019), Kim, Lee, Kim et al. (2019), Khalid 
et al. (2020), Ramezani et al. (2020), and Ismail et al. (2020).

Rostek et al. (2015) initiated research into fault detection in fluidised bed coal-fired 
boilers, utilising eight years of data from 19 input and 4 output sensors. Their study, 
employing a simple multilayer perceptron, achieved a training R² exceeding 80% and 
demonstrated a notable improvement in leak detection time, ranging from 2 to 9 days 
earlier than traditional methods. However, details on model quality and validation were 
not provided, limiting comprehensive assessment.

Kim, Lee, and Park (2019) extended their research to thermal power plants, employing 
an auto-associative neural network based on 18 days of data from 13 sensors. Despite lacking 

Figure 15. The residual value of total primary airflow and its 24-hour moving average for tube leak Fault #14

Figure 16. Sequence of boiler tube leak detection time by the corresponding models’ residuals for Fault #14
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detailed network structure information, their study reported a significant advancement in 
leak detection time, 30 minutes earlier than traditional methods. However, the absence of 
comprehensive performance metrics and validation results impedes thorough evaluation.

Similarly, Kim, Lee, Kim, et al. (2019) investigated fault detection in fluidised bed 
coal-fired boilers using a multilayer neural network. Although their study showcased a 
35-minute improvement in leak detection time compared to traditional methods, the lack 
of detailed model quality assessment and validation data limits comprehensive comparison 
with other studies.

Khalid et al. (2020) explored fault detection in fluidised bed coal-fired boilers using 
various classifiers, including SVM, k-NN, NB, and LDA. While their study demonstrated 
promising accuracy results, the absence of information on leak detection time and validation 
with data outside the learning period limits comprehensive comparison with other studies.

Ramezani et al. (2020) focused on fault detection in pulverised coal-fired boilers, 
employing a deep bidirectional LSTM network. Although they demonstrate the potential 
of recurrent neural networks for fault detection, the lack of detailed information on network 
structure and performance metrics hinders thorough evaluation.

Ismail et al. (2020) addressed boiler shutdown scenarios using a backpropagation neural 
network. Their study reported a leak detection time of 5 minutes earlier than traditional 
methods. However, the absence of detailed accuracy metrics and validation results limits 
the comprehensive assessment of their methodology.

In contrast, the current study significantly advances fault detection methodologies 
for pulverised coal-fired boilers. Leveraging nine years of data from 120 input and 10 
output sensors, it employed a deep feedforward neural network with optimisation of 
seven hyper-parameters. The network architecture included up to nine hidden layers 
with varying numbers of neurons and optimisation algorithms such as Adam, Adamax, 
Nadam, Nesterov, and AMSGrad. Notably, the study achieved impressive training and 
testing accuracies, with R² ranging from 82.8% to 99.3%. Furthermore, the leak detection 
time ranged from 3 to 30 days earlier than traditional methods, showcasing significant 
improvement in predictive maintenance capabilities. Importantly, validation with external 
data sets demonstrated reliable predictions for up to one-year post-learning. These findings 
underscore the robustness and efficacy of the methodology in enhancing fault detection 
capabilities in boiler and thermal power plant operations.

In summary, while previous studies have significantly contributed to fault detection 
in boiler and thermal power plants, the current study represents a notable advancement in 
data comprehensiveness, algorithm sophistication, performance metrics, and validation 
results. By benchmarking against this study and considering the insights from other research 
works, it is evident that there is immense potential for further advancements in machine 
learning-based fault detection methodologies in the energy sector.
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CONCLUSION

The studies highlighted here achieved notable success in early leak detection and 
prediction through deep-feedforward neural network models. The fine-tuning of hyper-
parameters notably enhanced the accuracy of predictions for parameters impacted by 
boiler tube leaks. The most effective model demonstrated a 99.63% correlation in training 
and 96.39% in testing with actual process data. During the network’s learning phase, it 
successfully detected all 12 tube leak faults, identifying them 3 to 30 days before the 
necessary boiler shutdown. A leak was confirmed when at least three models consistently 
predicted its occurrence. However, assessments of the model using data from two years 
post-learning period indicated that its predictions were reliable only for the first year. 
To maintain accuracy, continual updating and learning of the model are essential. The 
recommendation is to deploy these models in real-time operations at the studied plant, 
which would allow for evaluating their effectiveness in identifying real-time boiler tube 
leak faults.

For future research, it is recommended that researchers prioritise the real-time 
implementation and deployment of predictive models. Integrating these models into 
operational workflows will enable proactive maintenance strategies and minimise downtime 
due to tube leaks. Collaboration with industry partners to streamline deployment protocols 
and optimise computational efficiency is essential for ensuring seamless integration into 
operational workflows.

After deploying predictive models, conducting extensive field validation and case 
studies emerges as a critical next step. Real-world validation across diverse operational 
conditions and geographical locations provides empirical evidence of the model’s 
effectiveness and reliability. Leveraging insights gained from field validation studies, 
researchers can refine and optimise predictive models to address specific challenges 
encountered in operational environments.
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